By Boris A. Rosenfeld, Abe Shenitzer, Hardy Grant

This booklet is an research of the mathematical and philosophical elements underlying the invention of the idea that of noneuclidean geometries, and the following extension of the concept that of house. Chapters one via 5 are dedicated to the evolution of the idea that of area, best as much as bankruptcy six which describes the invention of noneuclidean geometry, and the corresponding broadening of the idea that of house. the writer is going directly to talk about innovations equivalent to multidimensional areas and curvature, and transformation teams. The booklet ends with a bankruptcy describing the purposes of nonassociative algebras to geometry.

**Read Online or Download A history of non-euclidean geometry: evolution of the concept of a geometric space PDF**

**Similar geometry and topology books**

- Calcolo geometrico, secondo l'Ausdehnungslehre di H. Grassmann(it)
- Topology of Manifolds and Varieties (Advances in Soviet Mathematics, Vol 18)
- Definite integration using the generalized hypergeometric functions
- Multiple View Geometry in Computer Vision, 2nd Edition
- Geometric Aspects of the Abelian Modular Functions of Genus Four (III)

**Extra resources for A history of non-euclidean geometry: evolution of the concept of a geometric space**

**Sample text**

Krantz, Invariant metrics and the boundary behavior of holomorphic functions on domains in Cn , J. Geom. G. Krantz, The boundary behavior of the Kobayashi metric, Rocky Mountain J. , 22 1992 227-233 E. Landau, G. Valiron, A deduction from Schwarz’s lemma, J. London Math. , 4 1929 162-163 L. Lempert, La m´etrique de Kobayashi et la repr´esentation des domaines sur la boule, Bull. Soc. Math. France, 109 1981 427-474 E. Lindel¨ of, M´emoire sur certaines in´ egalit´es dans la th´eorie des fonctions monog´enes, et sur quelques propri´et´es nouvelles de ces fonctions dans le voisinage d’un point singulier essentiel, Acta Soc.

4 1929 162-163 L. Lempert, La m´etrique de Kobayashi et la repr´esentation des domaines sur la boule, Bull. Soc. Math. France, 109 1981 427-474 E. Lindel¨ of, M´emoire sur certaines in´ egalit´es dans la th´eorie des fonctions monog´enes, et sur quelques propri´et´es nouvelles de ces fonctions dans le voisinage d’un point singulier essentiel, Acta Soc. Sci. Fennicae, 35 1909 3-5 E. Lindel¨ of, Sur un principe g´en´erale de l’analyse et ses applications a ` la theorie de la repr´esentation conforme, Acta Soc.

This lead to the theory of renormalization in the ﬁeld of complex dynamics in one variable. In fact rigorous proofs in this area all use complexiﬁcation. An analogous theory has not been developed in higher dimension although computer pictures indicate that the phenomenon occurs also for H´enon maps in R2 . The phenomenon is related to period doubling. In the complex domain one can ask the same in the case of behaviour under for example period tripling in the complex part of the Mandelbrot set.